首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   19篇
  2021年   1篇
  2018年   1篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1998年   2篇
  1997年   1篇
  1996年   6篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
41.
We surveyed 24 plant species to examine how leaf anatomy influenced chloroplast movement and how the optical properties of leaves change with chloroplast position. All species examined exhibited light-dependent chloroplast movements but the associated changes in leaf absorptance varied considerably in magnitude. Chloroplast movement-dependent changes in leaf absorptance were greatest in shade species, in which absorptance changes of >10% were observed between high- and low-light treatments. Using the Kubelka-Munk theory, we found that changes in the absorption (k) and chlorophyll a absorption efficiency (k*) associated with chloroplast movement correlated with cell diameter, such that the narrower, more columnar cells found in sun leaves restricted the ability of chloroplasts to move. The broader, more spherical cells of shade leaves allowed greater chloroplast rearrangements and in low-light conditions allowed efficient light capture. Across the species tested, light-dependent chloroplast movements modulated leaf optical properties and light absorption efficiency by manipulating the package (sieve or flattening) effect but not the detour (path lengthening) effect.  相似文献   
42.
Theodor Engelmann's experiments in 1882 provided the first recorded visual demonstration of light wavelengths that are absorbed by photosynthetic pigments. Later, starch images in intact leaves were used to demonstrate photosynthesis in green plants. Similarly, light-induced chloroplast movements can form images in leaves as a result of changes in light transmittance through leaves and photoinhibition can form images that can be visualized by whole leaf chlorophyll fluorescence. This paper provides a brief account of how photosynthesis has been used to create an assortment of 'living images' that offer stunning demonstrations of various aspects of photosynthesis.  相似文献   
43.
44.
In Arabidopsis (Arabidopsis thaliana), light-dependent chloroplast movements are induced by blue light. When exposed to low fluence rates of light, chloroplasts accumulate in periclinal layers perpendicular to the direction of light, presumably to optimize light absorption by exposing more chloroplast area to the light. Under high light conditions, chloroplasts become positioned parallel to the incoming light in a response that can reduce exposure to light intensities that may damage the photosynthetic machinery. To identify components of the pathway downstream of the photoreceptors that mediate chloroplast movements (i.e. phototropins), we conducted a mutant screen that has led to the isolation of several Arabidopsis mutants displaying altered chloroplast movements. The plastid movement impaired1 (pmi1) mutant exhibits severely attenuated chloroplast movements under all tested fluence rates of light, suggesting that it is a necessary component for both the low- and high-light-dependant chloroplast movement responses. Analysis of pmi1 leaf cross sections revealed that regardless of the light condition, chloroplasts are more evenly distributed in leaf mesophyll cells than in the wild type. The pmi1-1 mutant was found to contain a single nonsense mutation within the open reading frame of At1g42550. This gene encodes a plant-specific protein of unknown function that appears to be conserved among angiosperms. Sequence analysis of the protein suggests that it may be involved in calcium-mediated signal transduction, possibly through protein-protein interactions.  相似文献   
45.
N-(Indol-3-ylacetyl) derivatives (IAA conjugates) of aliphatic amino acids with a two- to six-carbon backbone including -l-amino acids, (-amino acids, and the ,-diamino acids ornithine and lysine were prepared, chemically characterized, and tested as sources of auxin in plant tissue culture. Stimulation of unorganized growth in Solanum nigrum L. callus and callus induction and developmental effects in tomato (Lycopersicon esculentum Mill. cv. Marglobe) hypocotyl explants were studied systematically. Relative auxin activities were estimated by comparing physiologically equivalent concentrations, in the optimal and suboptimal range, of the individual IAA conjugates. While the growth-promoting properties of some of the conjugates were species-dependent, those containing straight-chain two- to four-carbon -l-amino acid moieties were generally up to 100 times more active than those of their five- to six-carbon homologues. Branching of the amino acid backbone at C- (norvaline vs. valine and norleucine vs. isoleucine) and C- (norleucine vs. leucine) had a minor effect, but substitution of H- by a methyl group (-amino-l-butyric vs. -aminoisobutyric acids) almost completely blocked growth-promoting activity. IAA conjugates of -amino acids were, in most cases, nearly as active as those of their -amino-l-isomers. Among the conjugates of ,-diamino acids N -(IAA) ornithine was less active than N -(IAA)lysine. The activity of N -(IAA)lysine was less than for the -(IAA) isomer, and that of N ,N -(IAA)2-lysine was different in tomato and Solanum nigrum. The l-alanine and -lysine conjugates were also found to be useful for induction and development of Oenothera leaf callus and in tomato cell-suspension culture, two systems which require highly active sources of auxin.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indol-3-ylacetic acid the abbreviations for N-(indol-3-ylacetyl)amino acids are listed in Table 1.  相似文献   
46.
Exposure of plant tissue culture media to light from fluorescent bulbs changed the growth regulating properties of the media. The light caused nutrient medium-dependent photosensitized degradation of the phytohormone indole-3-acetic acid and other media components. Photochemical changes in culture media were caused by light from 290 to 450 nanometers and were prevented with a yellow long-pass filter. The use of appropriately filtered light when culturing plant material can eliminate unnecessary variability by stabilizing the culture media composition.  相似文献   
47.
Abstract Two chronosequences of unsaturated, buried loess sediments, ranging in age from <10,000 years to >1 million years, were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession was inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Core samples were collected at two sites 40 km apart in the Palouse region of eastern Washington State, near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the Winona site elevation is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was approximately 250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: approximately 1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Same-age sediments had equal quantities of microorganisms, but different community types. Differences in community makeup between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the microbial community age can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than the porewater ages, since microbial transport is severely restricted in unsaturated sediments. This is particularly true at the Winona site, which was never flooded.  相似文献   
48.
Gravity, light and plant form   总被引:20,自引:2,他引:18  
Plants have evolved highly sensitive and selective mechanisms that detect and respond to various aspects of their environment. As a plant develops, it integrates the environmental information perceived by all of its sensory systems and adapts its growth to the prevailing environmental conditions. Light is of critical importance because plants depend on it for energy and, thus, survival. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency. Gravity provides an almost constant stimulus that is the source of critical spatial information about its surroundings and provides important cues for orientating plant growth. Gravity plays a particularly important role during the early stages of seedling growth by stimulating a negative gravitropic response in the primary shoot that orientates it towards the source of light, and a positive gravitropic response in the primary root that causes it to grow down into the soil, providing support and nutrient acquisition. Gravity also influences plant form during later stages of development through its effect on lateral organs and supporting structures. Thus, the final form of a plant depends on the cumulative effects of light, gravity and other environmental sensory inputs on endogenous developmental programs. This article is focused on developmental interactions modulated by light and gravity.  相似文献   
49.
50.
Effect of triacontanol on plant cell cultures in vitro   总被引:2,自引:1,他引:1       下载免费PDF全文
Triacontanol [CH3(CH2)28CH2OH] increased growth in vitro of cell cultures of haploid tobacco (Nicotiana tabacum). The fresh weight of cell cultures of tomato (Lycopersicon esculentum), potato (Solanum tuberosum), bean (Phaseolus vulgaris), and barley (Hordeum vulgare x H. jubatum) was also increased. The increase in growth of tobacco callus seems to have been due to an increase in cell number. Another long chain alcohol, octocosanol [CH3(CH2)26CH2OH], did not increase the growth of tobacco cell cultures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号